Artificial Intelligence vs Machine Learning vs Deep Learning

Artificial Intelligence, Machine Learning, and Deep Learning are one of the most prominent topics in the domain of technology at the present. Although the three terminologies Artificial Intelligence, Machine Learning, and Deep Learning are used interchangeably, are they really the same? Every technophile is stuck at least once in the beginning whenever there is a mention of artificial learning vs machine learning vs deep learning. Let us try to find out how actually these three terms differ.

The easiest way to think of the relationship between the above terms is to visualize them as concentric circles using the concept of sets with AI — the idea that came first — the largest, then machine learning — which blossomed later, and the most recent being deep learning — which is driving today’s AI explosion — fitting inside both.

Graphically this relation can be explained as in the picture below.

As you can see in the above image consisting of three concentric circles, Deep Learning is a subset of ML, which is also a subset of AI. This gives an idea that AI is the all-encompassing concept that initially erupted, which was then followed by ML that thrived later, and lastly, Deep Learning that is promising to escalate the advances of AI to another level.

Starting with AI, let us have a more in-depth insight into the following terms.

Artificial Intelligence

Intelligence, as defined by Wikipedia, is “Perceiving the information through various sources, followed by retaining them as knowledge and applying them with real-life challenges.” Artificial intelligence is the science that deals with machines that are programmed to think and act like humans. By Wikipedia, it is defined as the simulation of human intelligence in machines using programs and algorithms.

Machines built on AI are of two types – General AI and Narrow AI

General AI refers to the machines capable of using all our senses. We’ve seen these General AI in Sci-Fi movies like The Terminator. In real life, a lot of work has been done on the development of these machines; however, more research is yet to be done to bring them into existence.

What we CAN do falls in the hands of “Narrow AI”. These refer to the technologies that can perform specific tasks as well as, or better than, we humans can. Some examples are – classifying emails as spam and not spam and facial recognition on Facebook. These technologies exhibit some facets of human intelligence.

Where does that intelligence come from? That brings us to our next term -> Machine Learning.

Machine Learning

Learning, as defined by Wikipedia, is referred to as “acquiring information and finding a pattern between the outcome and the inputs from the set of examples given.” ML intends to enable artificial machines to learn by themselves using the provided data and make accurate predictions. Machine Learning is a subset of AI. More importantly, it is a method of training algorithms such that they can learn to make decisions. (ReadAI and ML. Are they one and the same?)

Machine learning algorithms can be classified as supervised and unsupervised depending on the type of problem being solved. In Supervised learning the machine is trained using data which is well labelled that is, some data is already tagged with the correct answer while in unsupervised learning the machine is trained using the information that is neither classified nor labelled and the algorithm is supposed to find a solution to it without guidance. Also, a term called semi-supervised learning exists in which the algorithm learns from a dataset that includes both supervised and unsupervised data.

Training in machine learning requires a lot of data to be fed to the machine which then allows the machine (models) to learn more about the processed information.

Deep Learning 

Deep Learning is an algorithmic approach for the early machine-learning crowd. Neural Networks from the base for Deep Neural Learning and is inspired by our understanding of the biology of the human brain. However, unlike a biological brain where any neuron unit can connect to any other neuron unit within a certain physical distance, these artificial neural networks (ANN) have discrete layers, connections, and directions of data propagation.

For a system designed to recognize a STOP sign, a neural Network model can come up with a “probability score”, which is a highly educated guess, based on the algorithm. In this example, the system might be 86% confident the image is a stop sign, 7% convinced it’s a speed limit sign, and 5% it’s a kite stuck in a tree, and so on.

A trained Neural Networks is one that has been analyzed on millions of samples until it is sampled so that it gets the answer right practically every time.

Deep Learning can automatically discover new features to be used for classification. Machine Learning, on the other hand, requires to be provided these features manually. Also, in contrast to Machine Learning, Deep Learning requires high-end machines and considerably significant amounts of training data to deliver accurate results.

Wrapping up, AI has a bright future, considering the development of deep learning. At the current pace, we can expect driverless vehicles, better recommender systems, and more in the forthcoming time. AI, ML, and Deep Learning (DL) are not very different from each other; but are not the same.

Everything you need to know about Automated Machine Learning

What is Automated Machine Learning?

It is the term used for the technology automating the end-to-end process of applying machine learning to real-world problems. A typical machine learning problem requires a dataset that consists of some input data on which a training model is needed to be built. The input data may not be in such a form that all machine learning algorithms may be applied to it. An ML expert needs to implement the appropriate procedures (including data pre-processing steps, feature scaling, feature extraction), resulting in a dataset suitable for machine learning. Building the model involves the selection of the best algorithm for maximizing performance from the dataset. Many of these steps are often beyond the abilities of non-experts. Considering this in mind, AutoML was proposed as an Artificial Intelligence-based solution to the gruesome challenge of applying machine learning. AutoML in machine learning using python and r thus started gaining popularity. (Read – AI and ML. Are they one and the same?)

What is the Need for AutoML?

The idea of AutoML took off with the development in the field of Artificial Intelligence. It all took shape when Jeff Dean, Google’s Head of AI, suggested that “100x computational power could replace the need for machine learning expertise”. This raised several questions:

Do hundreds of thousands of developers need to “design new neural nets for their particular needs,” or is there an effective way for Neural Networks to generalize similar problems? Or can a large amount of computation power replace machine learning expertise?

Clearly, the answer is NO. Many factors support the idea of AutoML:

  • Shortage of machine learning expertise
  • Machine-Learning expertise is cost-inefficient

For large organizations requiring high efficiency, AutoML cannot replace a machine learning expert, but it can be cost-effective and can be useful for smaller organizations.

Applications of AutoML

AutoML can be used for the following tasks using AutoML platforms like Google cloud AutoML:

  • Automated Data Preparation
    It Involves column type detection, intent detection, and automated task detection within the dataset.
  • Feature Engineering
    It includes Feature Scaling, meta-learning, and feature selection.
  • Automated Model Selection
    AutoML can help in model selection.
  • Automated problem checking
    Problem checking and debugging can be automated.
  • Automated analysis of results obtained
    Applying wonders of AI can save time and capital.

Here is a good read – Two Real Life Examples of Google’s Automated Machine Learning.

Popular AutoML Libraries like Featuretools, Auto-sklearn, MLBox, TPOT, H2O, Auto-Keras are the ones contributing to enhanced AutoML experience.

Advantages of AutoML

  • The installation of the libraries is effortless.
  • The introduction of Cloud AutoML has speeded up the development of AutoML.
  • Cost-effective, and Labour-efficient.
  • Require a lower level of expertise.

Limitations of AutoML

Although coming with a set of advantages, advanced AutoML introduces the concept of hyperparameters, which are itself needed to be learnt. AutoML can be usefully incorporated for doing a task that can be generalized, but for functions that are unique and require some level of expertise, AutoML turns out to be a disaster.

Future of AutoML

Automated Machine Learning (AutoML) has been gaining traction within the Data Science community. This surge of interest is reflected in the development and release of numerous open-source Automated Machine Learning tools and libraries, which are mentioned above, and on the emergence of businesses focused on building and commercializing AutoML systems (like DataRobot, DarwinAI, H2O.ai, OneClick.ai). AutoML is a hot topic for the industry, but it is not all-set for replacing data scientists from existence. Besides the difficulty of automating many of the data science tasks, its sole purpose is to assist data scientists and free them from the burden of repetitive, and less demanding jobs that can be generalized, so they can invest their time on tasks that are more challenging, creative, and harder to automate. (AutoML: The Next Wave of Machine Learning)

Concluding, we live in an era where the growth of data beats our ability to make sense of it. AutoML is an exciting technological field that has been in the spotlight and which promises to mitigate this problem through the development in the sector of Artificial Intelligence.

We expect significant strides of progress in this field in the near future, and we recognize the help of AutoML systems in solving many of the challenges that we face out there.